Enumerative combinatorics related to partition shapes

نویسنده

  • JONAS SJÖSTRAND
چکیده

This thesis deals with enumerative combinatorics applied to three different objects related to partition shapes, namely tableaux, restricted words, and Bruhat intervals. The main scientific contributions are the following. Paper I: Let the sign of a standard Young tableau be the sign of the permutation you get by reading it row by row from left to right, like a book. A conjecture by Richard Stanley says that the sum of the signs of all SYTs with n squares is 2. We prove a generalisation of this conjecture using the Robinson-Schensted correspondence and a new concept called chess tableaux. The proof is built on a remarkably simple relation between the sign of a permutation π and the signs of its RS-corresponding tableaux P and Q, namely sgn π = (−1) sgnP sgnQ, where v is the number of disjoint vertical dominoes that fit in the partition shape of P and Q. The sign-imbalance of a partition shape is defined as the sum of the signs of all standard Young tableaux of that shape. As a further application of the sign-transferring formula above, we also prove a sharpening of another conjecture by Stanley concerning weighted sums of squares of sign-imbalances. Paper II: We generalise some of the results in paper I to skew tableaux. More precisely, we examine how the sign property is transferred by the skew Robinson-Schensted correspondence invented by Sagan and Stanley. The result is a surprisingly simple generalisation of the ordinary non-skew formula above. As an application, we find vanishing weighted sums of squares of sign-imbalances, thereby generalising a variant of Stanley’s second conjecture. Paper III: The following special case of a conjecture by Loehr and Warrington was proved by Ekhad, Vatter, and Zeilberger: There are 10 zero-sum words of length 5n in the alphabet {+3,−2} such that no consecutive subword begins with +3, ends with −2, and sums to −2. We give a simple bijective proof of the conjecture in its original and more general setting where 3 and 2 are replaced by any relatively prime positive integers a and b, 10 is replaced by ` a+b a n , and 5n is replaced by (a+ b)n. To do this we reformulate the problem in terms of cylindrical lattice walks which can be interpreted as the south-east border of certain partition shapes. Paper IV: We characterise the permutations π such that the elements in the closed lower Bruhat interval [id, π] of the symmetric group correspond to non-capturing rook configurations on a skew Ferrers board. These intervals turn out to be exactly those whose flag manifolds are defined by inclusions, as defined by Gasharov and Reiner. The characterisation connects Poincaré polynomials (rank-generating functions) of Bruhat intervals with q-rook polynomials, and we are able to compute the Poincaré polynomial of some particularly interesting intervals in the finite Weyl groups An and Bn. The expressions involve q-Stirling numbers of the second kind, and for the group An putting q = 1 yields the poly-Bernoulli numbers defined by Kaneko.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partition Analysis, Modular Functions, and Computer Algebra

This article describes recent developments connecting problems of enumerative combinatorics, constrained by linear systems of Diophantine inequalities, with number theory topics like partitions, partition congruences, and q-series identities. Special emphasis is put on the role of computer algebra algorithms. The presentation is intended for a broader audience; to this end, elementary introduct...

متن کامل

Complexity problems in enumerative combinatorics

We give a broad survey of recent results in Enumerative Combinatorics and their complexity aspects.

متن کامل

Recent Advances in Algebraic and Enumerative Combinatorics

Algebraic and enumerative combinatorics is concerned with objects that have both a combinatorial and an algebraic interpretation. It is a highly active area of the mathematical sciences, with many connections and applications to other areas, including algebraic geometry, representation theory, topology, mathematical physics and statistical mechanics. Enumerative questions arise in the mathemati...

متن کامل

N ov 2 00 6 SIGNED DIFFERENTIAL POSETS AND SIGN - IMBALANCE

We study signed differential posets, a signed version of Stanley’s differential posets. These posets satisfy enumerative identities which are signed analogues of those satisfied by differential posets. Our main motivations are the sign-imbalance identities for partition shapes originally conjectured by Stanley, now proven in [3, 4, 6]. We show that these identities result from a signed differen...

متن کامل

6 Signed Differential Posets and Sign - Imbalance

We study signed differential posets, a signed version of differential posets. These posets satisfy enumerative identities which are signed analogues of those satisfied by differential posets. Our main motivations are the sign-imbalance identities for partition shapes originally conjectured by Stanley, now proven in [4, 5, 7]. We show that these identities result from a signed differential poset...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007